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Fig. 3 Natural frequencies for the � rst bending and torsional
modes against xa for selected values of frequency ratio vh/va for
c = a) 0.4 and b) 20.4.

and va are uncoupled fundamental bending and torsional nat-
ural frequencies that are both independent of xa and c, whereas
the plotted graphs shown by solid and dashed lines represent
fundamental bending and torsional coupled natural frequen-
cies, respectively. It is clear from Fig. 3a that as the negative
xa increases, the frequency difference between the two vibra-
tional modes of interest increases and as a consequence � utter
speed also increases, thus reinforcing the importance of modal
coupling in such studies.10

In contrast, when negative c (c = 20.4 in this case) is
present together with negative xa (see Fig. 3b), frequency con-
vergence occurs between the two modes of interest, and as a
result the � utter speed reduces. The preceding frequency phe-
nomenon was also noticed by Weisshaar and Foist,7 but not
from an aeroelastic point of view, so that its effect on � utter
behavior was not reported.

From the preceding results, it can be concluded that the
wash-out behavior of a composite wing can be useful in in-
creasing its � utter speed when the mass axis is well behind
the shear center of the wing cross section as opposed to the
corresponding case when the wing exhibits wash-in behavior.
The investigation has also revealed that for certain combina-
tions of positive c and negative xa , the � utter speed is unaf-
fected by changes in the frequency ratio vh/va .
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Perturbation Solution of Dynamic
Stability Derivatives over Pointed

Bodies of Revolution

Guowei Yang* and Etsuo Morishita†
University of Tokyo, Tokyo 113, Japan

Introduction

T HE unsteady Euler and Navier– Stokes equations repre-
sent adequate mathematical models for unsteady transonic

� ow. Time-accurate solutions of the Euler and Navier– Stokes
equations are computationally expensive, particularly in the
low-frequency range. But the linearized theory fails in calcu-
lating transonic � ows. For engineering applications, a compro-
mise perturbation theory that considers the nonlinear effects
for transonic � ow and also avoids massive time-accurate com-
putation for low reduced frequencies is developed in this pa-
per.

The theory is simpli� ed by introducing a perturbation ap-
proach. The unsteady � ow is decomposed into a mean steady
motion and unsteady perturbation components. The mean
steady � ow is then described by a nonlinear equation, and the
unsteady perturbed � ow is described by a complex linear equa-
tion, with variable coef� cients determined by the mean steady
� ow.

Here, for simplicity, the sharp-nosed body of revolution un-
dergoing pitching oscillations around zero incidence is consid-
ered. Because the � ow past a body of revolution at zero in-
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cidence is a two-dimensional axisymmetric � ow, this avoids
having to solve a three-dimensional equation. For a sharp-
nosed body, the � ow is not separated on the leeward side, even
at moderate incidence. Thus, the inviscid theory becomes valid
and a cosine variation of quantities in the cross� ow plane may
be assumed. In this approximation, the control equations and
their boundary conditions have been deduced, and the pressure
coef� cient and dynamic stability derivatives for pointed bodies
of revolution are calculated.

Formulation
The conservation form of the unsteady Euler equations in a

body-axes frame is given by

­Q ­E ­F ­G
1 1 1 = H (1)

­t ­j ­h ­z

Here, t is the time and (j, h, z ) is the body-conformed cur-
vilinear coordinate system; In Eq. (1), Q is the vector of de-
pendent � ow variables; E, F, and G are the inviscid vectors;
and H is source item.

For � ows about a body of revolution undergoing a small-
amplitude harmonic oscillation at zero incidence (except the
circumferential velocity component), a cosine variation of the
� ow quantities in the circumferential direction can be assumed.
Using R represents any one of the � ow quantities, r, u, v, p,
or e, and it can be decomposed into a mean steady and an
unsteady component:

vt 2R(j, h, §, t) = R (j, h) 1 a R cos §e 1 o(a ) (2a)0 0 1 0

For circumferential velocity component w, we assume

v t 2w(j, h, §, t) = a w sin §e 1 o(a ) (2b)0 1 0

where the subscripts 0 and 1 refer to the mean and unsteady
complex components, respectively; v is the frequency of os-
cillation; and a0 is the amplitude of oscillation motion.

By substituting Eqs. (2a) and (2b) into Eq. (1) and collecting
terms of the zeroth order, one obtains the zeroth-order equa-
tions for the mean steady quantities

­E ­F0 0
1 = H (3)0

­j ­h

2 1 TE = J [r U , r u U 1 j p , r v U 1 j p , (e 1 p )U ]0 0 0 0 0 0 z 0 0 0 0 r 0 0 0 0

2 1 TF = J [r V , r u V 1 h p , r v V 1 h p , (e 1 p )V ]0 0 0 0 0 0 z 0 0 0 0 r 0 0 0 0

2 1 2 TH = 2(Jr) [r v , r u v , r v , (e 1 p )v ]0 0 0 0 0 0 0 0 0 0 0

U = j u 1 j v , V = h u 1 h v0 z 0 r 0 0 z 0 r 0

The � rst-order equations for real and imaginary parts of the
unsteady component are

­E ­F1r 1r
1 = H 1 vQ 1 G (4a)1r 1i 1r

­j ­h

­E ­F1i 1i
1 = H 2 vQ 1 G (4b)1i 1r 1i

­j ­h

here, the uni� ed expressions of the real and imaginary parts
are given

2 1E = J [r U 1 r U , (r u 1 r u )U 1 r u U 1 j p1j 0 1j 1j 0 1j 0 0 1j 0 0 0 1j z 1j

(r v 1 r v )U 1 r v U 1 j p , r U w , (e 1 p )U1j 0 0 1j 0 0 0 1j r 1j 0 0 1j 0 0 1j

T1 (e 1 p )U ]1j 1j 0

21F = J [r V 1 r V , (r u 1 r u )V 1 r u V 1 h p1j 0 1j 1j 0 1j 0 0 1j 0 0 0 1j z 1j

(r v 1 r v )V 1 r v V 1 h p , r V w , (e 1 p )V1j 0 0 1j 0 0 0 1j r 1j 0 0 1j 0 0 1j

T1 (e 1 p )V ]1j 1j 0

21H = 2(Jr) [r v 1 r v , r u v 1 r v u 1 r u v1j 0 1j 1j 0 0 0 1j 0 0 1j 1j 0 0

2 T2r v v 1 r v , 2r v w , (e 1 p )v 1 v (e 1 p )]0 0 1j 1j 0 0 0 1j 0 0 1j 0 1j 1j

2 1 TG = 2(Jr) [r w , r u w , r v w , 2p , (e 1 p )w ]1j 0 1j 0 0 1j 0 0 1j 1j 0 0 1j

U = j u 1 j v , V = h u 1 h v1j z 1j r 1j 1j z 1j r 1j

2 2e = r (u u 1 v v ) 1 0.5p (u 1 v ) 1 p /(g 2 1)1j 0 0 1j 0 1j 1j 0 0 1j

where the subscript j is taken as r, i, which refer to the real
and imaginary parts of unsteady components.

The � rst-order equation is a linearized equation, its Jacobian
coef� cient matrix being determined by the zeroth-order equa-
tions. The numerical calculation of the unsteady motion is re-
duced to solving three coupled ‘‘steady’’ equations.

Boundary Conditions
For the oscillating body, the surface boundary condition V?n

= Un is imposed. By substituting Eq. (2) into the condition and
collecting terms of the same order, the zeroth-order and � rst-
order surface boundary conditions can be obtained:

2u sin d 1 v cos d = 0 (zeroth-order) (5a)0 0

2u sin d 1 v cos d = 01r 1r (� rst-order)
2u sin d 1 v cos d = 2v[z cos d 1 f (z)sin d]1i 1i

(5b)

here V is the velocity of the � uid, n is the unit normal to the
moving surface, d is the inclination angles of body surface in
the meridian plane, and Un is the velocity component of the
moving surface in the normal direction.

In the far � eld, we use nonre� ecting boundary conditions
based on the local Riemann unvariables. At the downstream
boundary, a simple zero-axial-gradient extrapolation condition
was applied.

Obviously, the zeroth-order equations and boundary condi-
tions are the same as axisymmetric steady equations and cor-
responding boundary conditions.

Pressure Coef� cient and Dynamic
Stability Derivatives

The surface pressure coef� cient can be expressed by the
perturbation approach as

2 1C = C 1 C cos §a(t) 1 v C cos § Ça(t) (6)p p0 pr pi

At zero incidence, the pressure of the mean steady � ow does
not contribute to the pitching moment and dynamic stability
derivative; hence they can be obtained only related to the � rst
order quantities

l

23C = aR C (z 2 z ) f (z) dzm pr cE
0

l

2 1 231 Çav R C (z 2 z ) f (z) dz (7a)pi cE
0

so

l

21 2 3C 1 C = v R C (z 2 z ) f (z) dz (7b)mÇa mq pi cE
0
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Fig. 2 Comparison with the experiment of quasisteady surface pressure for four-caliber ogive– nose– cylinder.

Fig. 1 Comparison with the experiment of steady surface pressure for a four-caliber ogive– nose– cylinder.

Because Cpi contains the effects of angle of attack and ro-
tation, the derivative in Eq. (7a) should be written asCmÇa

1 Cmq in Eq. (7b). The reference area and length areCmÇa

assumed to be the base area and radius, with l being the length
of the body of revolution.

Computation Method
Introducing time-correlating terms in Eqs. (3) and (4), the

equations are revised into

­Q ­E ­F0 0 0
1 1 = H (8a)0

­t ­j ­h

­Q ­E ­F1r 1r 1r
1 1 = H 1 vQ 1 G (8b)1r 1i 1r

­t ­j ­h

­Q ­E ­F1i 1i 1i
1 1 = H 2 vQ 1 G (8c)1i 1r 1i

­rt ­j ­h

21 TQ = J [r , r u , r v , e ]0 0 0 0 0 0 0

21 TQ = J [r , r u 1 r u , r v 1 r v , r w , e ]1r 1r 0 1r 1r 0 0 1r 1r 0 0 1r 1r

21 TQ = J [r , r u 1 r u , r v 1 r v , r w , e ]1i 1i 0 1i 1i 0 0 1i 1i 0 0 1i 1i

The time-stepping iterative method is employed for the so-
lution of the mean steady and unsteady perturbation equations.
A shock-capturing scheme (NND) created by Zhang1 is used
in the space discretization. LU – SGS, created by Yoon and
Jameson,2 is used in an implicit iterative mode. The compu-
tational procedure is � rst to compute the mean � ow� eld, and
then all of the coef� cients for the � rst-order equations and the
perturbed boundary conditions can be computed. Simultaneous
solutions of the � rst-order equations are then obtained.

The numerical solutions are computed with a C-type grid
having 128 3 65 grid nodes, the normal distance of the � rst
point away from the body surface is nearly 102 3 radius lengths,
the locations of the outer boundary are removed from the body
by 10 radius lengths. The computed time step was taken as Dt
= 0.01. For the zeroth equation, as a result of calculating the
� ow� eld at zero incidence, a steady � ow case takes 600 time
stepping to reach the density residual error of 1024. For the

� rst-order coupled equations, because of their linearity, the re-
sidual tends to be stable at only about 200 iterations, but the
residual error dropped two orders of magnitude, this point may
be caused by the numerical error of zeroth-order � ow� eld.

Results and Discussion
Zeroth-Order Calculated Result

The steady-state solution for the surface pressure for the
four-caliber ogive– nose– cylinder was obtained directly from
the zeroth-order equations shown by the solid curves in Fig.
1. The steady-state solution compares satisfactorily with ex-
perimental data3 at zero incidence. Thus, the mean steady � ow
solution, which was used as the input for the unsteady � ow
calculation, is validated.

Quasisteady Perturbation Solution

In the previous equations, if the oscillation frequency v =
0, the perturbation equations at � xed incidence can be ob-
tained. The steady � ow can be divided into a mean steady and
a real linearized perturbation equation. The quasisteady solu-
tion for the perturbed surface pressure is shown in Fig. 2.
Because the perturbed � ow� eld is linear with respect to the
incidence, the magnitude of DCp/a is plotted and compared
with experimental data for a = 64 deg and a = 68 deg. Figure
2 shows that the agreement between theoretical and experi-
mental results is excellent, indicating that linearity of the per-
turbed � ow was realized up to an 8-deg incidence. Solving
two two-dimensional coupled equations instead of solving the
three-dimensional Euler equations up to 8-deg incidence will
save large amounts of computer storage and time, implying the
signi� cance of this method in engineering applications.

Unsteady Perturbation Solution

Figure 3 gives the perturbation surface pressure for different
reduced frequencies and Mach numbers. At the low reduced
frequency k = 0.01, the imaginary part of perturbed pressure
is approximately zero, indicating that the � ow is nearly a
quasisteady � ow. For reduced frequency k = 0.05, the real part
of the perturbed pressure is virtually unchanged with reduced
frequency, but the changes of its imaginary part are obvious,
and its changes appear to be a nonlinear character with reduced
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Fig. 3 Real and imaginary parts of unsteady surface pressure
for a four-caliber ogive– nose– cylinder.

Fig. 4 Comparison of dynamic stability derivative vs pitching
center for a parabolic arc nose.

frequency; it indicates a nonlinear dependence of the pitch-
damping coef� cient on reduced frequency. The conclusion is
also suitable for the results with the variation of pitching cen-
ter. For different Mach numbers (M = 0.8 and 0.9), the imag-
inary part is nearly unchanged, but the real part is changed,
and the variations of the real part are similar to those of the
quasisteady pressure.

No experimental data of dynamic stability derivatives are
available for comparison. The dynamic derivative for a para-
bolic-arc nosed body are calculated by the present theory, and
a comparison with results of the theory of Liu et al.4 as well
as Hsieh’s5 perturbation potential solution is made. The total
damping-in-pitch coef� cient versus pitching center is shown
in Fig. 4. It indicates that the results of this theory have the
same general tendency as Liu’s and Hsieh’s, but when the
pitching center is close to the nose of the body, differences
between the various theoretical appear. The result of the pres-
ent theory lies between those of Liu’s and Hsieh’s theories.
Therefore, the present theory seems equally capable of pre-
dicting dynamic stability derivatives.

Conclusions
A perturbation theory and numerical solution based on the

unsteady Euler equations were developed for unsteady tran-
sonic � ows about sharp-nosed bodies of revolution undergoing
harmonic oscillations. The following conclusions can be
drawn.

1) The quasisteady solution for the perturbation surface pres-
sure for the sharp-nosed body of revolution agrees well with
experimental results.

2) The unsteady results for a total damping-in-pitch coef� -
cient agree well with results of the available calculation for a
parabolic-arc nose. Although no experiment measurements for
comparison are available, based on the analysis, the unsteady
surface perturbation pressures are reasonable.

3) The theory is easily extended to treat three-dimensional
unsteady � ows on various con� gurations without limitation
bodies of revolution. In engineering application, the theory
may be ef� cient and effective for the prediction of unsteady
� ows and dynamic stability derivatives at small incidence.
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Introduction

T HE design of modern-day aircraft is a multidisciplinary
process involving the integration of several disciplines

such as aerodynamics, structures, dynamics, and propulsion,
where optimization techniques that are able to address the dif-
ferent disciplines simultaneously are valuable tools. One such
optimization technique is the Kreisselmeier– Steinhauser
(K – S) function approach.1 The K– S technique is a multiob-
jective optimization technique that combines all of the objec-
tive functions and the constraints to form a single unconstrai-
ned composite function that is then minimized using an
appropriate unconstrained solver. The technique has been
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